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FDTD Modeling of Wave Propagation in
Dispersive Media by Using the Mobius
Transformation Technique
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Abstract—This paper introduces a technique for finite-dif- permittivity function [14], [15]. Several authors have carried out
ference time-domain modeling of wave propagation in general jnvestigations of the numerical properties of these methods as

Mth-order dispersive media. Ohm'’s law in the Laplace domain ; ; ; ;
with an Mth-order rational model for the complex conductivity \év:SI'It:S[,fE%T[gg;atlve studies of their accuracy and computational

is considered as a constitutive relation. In order to discretize this ’ ) .
model, the complex conductivity is mapped onto theZ-transform This paper presents an alternative technique for FDTD mod-
domain by means of the Mobius transformation. This leads eling of wave propagation in{th-order dispersive media. This
finally to a set of difference equations that is consistent with Yee’s technique basically consists of considering Ohm’s law in the
scheme. The resulting formulation is explicit, ithas a second-order | 551306 domain as a media constitutive relation assuming an
accuracy, and the need for additional storage variables is minimal. Mth-ord fi | model for th | ductivity. This re-
The numerical stability problem is discussed and the numerical th-orderrational modaelfor the complex conauclivity. Thisré
dispersion equation for Mth-order media is given. lation in then expressed in tii&transform domain by means of
the Mobius transformation (MT). Finally, the resulting expres-
sion is written in difference form leading to a formulation that
is consistent with Yee’'s scheme. We discuss the numerical sta-
bility of this technique and derive its numerical dispersion equa-
. INTRODUCTION tion for a generalMth-order dispersive medium. Recently, this
HE applicability of the conventional finite-differenceMethod has been successfully applied to the incorporation of
time-domain (FDTD)—Yee’s scheme [1]—is restrictedinear lumped networks into FDTD simulators [21]. Throughout
to linear, isotropic, nondispersive media. Of course, it is podliS paper, we will refer to this technique as the MT technique.
sible to handle media with frequency-dependent constitutive TO illustrate the validity of the proposed technique, two exam-
characteristics by dividing the frequency band of interest intoP4€S With exact solutions have been considered: the computation
number of subbands for which the constitutive parameters &fghe reflection and transmission coefficients of a dielectric slab
nearly constant and by performing one FDTD computer riiharacterized by three Debye poléd (= 3), and the compu-
for each subband. However, this is a cumbersome approd@ion of the reflection coefficient of a half-space medium char-
when different types of dispersive media are present arfterized by two Lorentz pole-pair3{ = 4). In both cases,
furthermore, the broad-band capability of the FDTD method {§€ results obtained by FDTD under broad-band excitation have

Index Terms—Dbispersive media, FDTD methods, Mobius trans-
formation.

lost. been compared with the exact data.
Over the last decade, a number of researchers have realized
that it is necessary to extend the conventional FDTD method Il. THEORY

to incorporate dispersive media. The currently available tech-

niques for handling dispersive media with FDTD simulators" The Model

are often grouped under three main categories: recursive conthe conventional FDTD method is based on the discretiza-
volution methods [2]-[6], auxiliary differential equation (ADE)tion of the time-dependent Maxwell’s curl equations in linear,
techniques [7]-[12], and th&-transform method [13]. A fourth isotropic, nondispersive media. To incorporate a dispersive
technique has recently been introduced which basically comedium into FDTD simulators, first a current density tefris
sists of a direct fitting of the constitutive characteristics of thedded to Maxwell-Ampere’s equation

medium into a discrete-time frequency-domain conductivity or

V x (7, 1) = e 22D L Fii gy M
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wheres (7, s) represents the Laplace domain conductivity. IiThis high-order difference equation is coupled to (4) since both

the following, we will assume (7, s) to be a rational function equations involve the quantitigs? ! and.J2*1. To maintain

of the complex frequency as the explicit nature of the conventional FDTD method, (4) and
(8) must be solved foE7*! and J"*+! before encoding them

M into an FDTD simulator. This results in

Z am(F)Sm
- _ m=0 1
o= ) Bt = g1
2. bm(7)s™ Ao T3
m=0 { dOCoo
wherea,,, andb,,, are real-value coefficients add is an integer Ay

E" +dy [v x ﬁ} R

fe3

denoting the order of the medium. d—do ,
-3 AL+ 5 Jh (9a)

B. Discretization et _ 1 (E™ 4 AL) (9b)

Equation (1) is discretized by using Yee’s scheme with a time “ do > ° “
average for the current density term where

A _n+(1/2) M

n+l/- — n(> t =

Ea (7E(\) —Ea(7Ea)+§{|:v X H:|a (7E(\) A, = Z (cmEZ—m-l—l _dmjg—m-i—l).
m=1

1rn/= n+l/=
—3a (e, + S, )]} The above equations allow/th-order dispersive media to be
(4) incorporated into FDTD simulators. With respect to the con-
ventional FDTD method, the implementation of (9a) and (9b)
wherea = z, y, z and7g_ denotes the spatial position &f, requires an additional computational cost2df/ — 1 storage
at Yee’s cell. In (4), the curl term is written in compact formyariables an@} + 4 real products per each electric field com-
detailed expressions for this term can be found in [1]. ponent and per cell.
For the sake of brevity, in the following we will not specify the
spatial point”z_ at which the equations are evaluated, becauSe Efficient (Minimal) Implementation
this point is the same for all the remaining difference equations.To reduce memory requirements, more efficient implemen-
Ohm'’s law is discretized by directly mapping the Laplacgations of (8) can be devised. Such an equation, in fact, can be
domain onto theZ-transform domain. To this end, the MT  interpreted as an infinite-impulse response (IIR) digital filter. As
. in [14], we adopt the transposed direct form Il to implement (8).
— 21-2= 5 This is a filter realization that minimizes memory requirements
A1+ 271 [22]. Following this approach, (8) is expressed in the following
equivalent form:

S

is applied to (2), resulting in

o o EITY =W |+ do 0T
J(T7 Z) - O—(T’ Z)E(77 Z) (6) W(ryl,t} = (7;7 m+1 crnE(ryH—l + drn,‘](ryl—i—l
with o(7, Z), which represents th&-transform domain con- Wot =dy Jit — ey BN (10)
ductivity, given by N )
wherem =1, 2, ..., M—1,andW, ,, are auxiliary variables.
M o This set ofM + 2 first-order difference equations is, again, cou-
N(F, 2) 1+ mz_:l ()27 pled to (4). For comparison with previously published methods,
o(r, Z) = D 2) - M — (7)  we will separately discuss the decoupling of these equations for
’ > dp (P Z—m the particular case¥/ = 0 andM = 1 and for the general case
m=0 M > 1.

1) Zeroth-Order Media:For zeroth-order media, the con-

where the coefficients,,, andd,,, are related te,,, andb,,, and L :
Bm " o " ductivity is static, thus

to the time stepd,. Expressions to compute these coefficien
are given in the Appendix. — () =
Equation (6) can now be written in difference form by simply ols) = o(Z) = o0.

considering the relationshig ™™ F'(Z) — F"~™, whichleads |n this case, (4) and (10) reduce directly to
to

2A _1nt(1/2) 26, — ogA
M M E(Tyl-l-l =t |:V X H:| + &E:
En—l—l + Z c En—rn,—l—l — Z d Jn—rn,-l—l . (8) 2600 + O'OAt o 2600 + O'OAt
m=1 m=0 which is seen to be the equation obtained to updaté&’theom-

1This conformal transformation is also known as a “bilinear” or “Iinear-fra(:pOnent of the electric field When_th.e t'me'aver"_ige scheme is
tional” transformation. adopted to incorporate lossy media into FDTD simulators [23].
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2) First-Order Media: First-order media, such as coldthe trapezoidal rule. An alternative interpretation of the time-do-
plasma and Debye media, are characterized by a conductivitgin discretization scheme underlying the application of (5) to

function of the form (2) is developed in this section.
Equation (8) can be rewritten in terms of the coefficients
(s) = ao + s andb,,, and in operational form as
bo +b1s
M a . M b .
For cold plasma, the coefficientsofs) areaq = eow?, a; = 0, > ATZl &t mE =y A’Zl SrpM-m g (12)
bo = w., andb; = 1, wherew,, andw, are the plasma and the =~ m=0 ~* m=0 !

collision angular frequencies, respectively. For Debye medlﬁhereét

the coefficients 0b(s) areap = 0, a1 = ¢; — €oo, bo = 1,@Nd 54415 respectively. Their definitions can be found in [24].

b1 = 7, whereg, is the static permittivity and is the relaxation On the other hand, considering the relationsHigF'(s) «

time constant. , _ . _dm™F(t), whered, denotes derivation with respect to time, (2)
For these media, by decoupling (4) and (10) and eliminating, pe expressed in the continuous-time domain as the following

W, 1, we obtain high-order ordinary differential equation:

andgu, are the central difference and the average oper-

et _ 1 M . M .
e > amdE(t) =Y budJ(1). (13)
Lnt(1/2) o o m=0 m=0
’ {[V X L + <E - 2_d0> ko Comparing (12) with (13), we find that the application of (5) to
d—dy (2) is equivalent to .th.e discretization 'of (13) by using a differ-'
+ 50 Ja’} (11a) ence scheme consisting of the following second-order approxi-
1 mation:
It = o (eEg + Byt —dia). (11b)
0 d;nF(t) ~ 6?’;14”7an

Arn
For cold plasma, the equations in (11) are identical to the '
equations of the scheme called the “New DI method” given #@r the m-times derivative operator. Note that this approxima-

[19]. Also, the equations in (11) are the same as the equatidi®$ applies also forn = 0.

given in [7] (this can be shown by simply letting, = 0 and

eliminating the polarization vector in [7]). I1l. NUMERICAL STABILITY AND DISPERSIONANALYSIS
3) Mth-Order Media (4 > 1): Decoupling, again, (4) and o Numerical Stability

(10), and eliminating¥,, »;, we obtain . .
' To study the numerical stability of the proposed scheme, the

1 von Neumann technique is adopted. This method, which basi-

Entl = - I cally consists of expressing the relevant difference equations in
X T2 the spectral domain, leads to a stability polynon$iak). The
. {G;OOEN, n [V o ﬁ} n+(1/2) condition for stability is that all the root&; of S(Z) will be
JAVERRS @ inside, or on, the unit circle in th&-transform domain, i.e.,
1. 1. 1Zi| < 1.
+2_d0 Wai— 2 Ja} For simplicity, instead of working directly with Maxwell's

equations, the time-dependent wave equation for the electric

1
n+1 n—+1 n . . . . . . .
Tt = do (Ea™ ~ ) field in a homogeneous dispersive medium is considered

a,l

1 1 1
Wn+ = g,rn+l - CmE;H_ + dm/‘]g—i—

o, m V2E(t) — pecod2E(t) — pdy J(t) =0
W;’j\b_l =—cnE? — ey BN+ dp JY 4 dpy—y JIT
whered, denotes partial derivation with respect to time. Ac-
wherem =1, 2, ..., M — 2. With respect to the conventionalcording to the conventional FDTD method, this equation is ap-
FDTD method, the implementation of these equations requiretoximated by

2M + 4 additional real products and only additional storage

2 2
variables (one fot/, and M — 1 for the auxiliary variables o, 6\ zn Oy
« & oo 5 | B =t J =0 (14
W) < L8yt A, -
D. A Time-Domain Interpretation of the MT whereé,, denotes the central difference operator with respect to

the coordinate indicated by the subscript.

. The_ ap_pI|<_:at|on .Of the MT' as m'_[rodu_cgd n the above sec- Starting from (12) and (14), and following the procedure de-
tions, is similar to its use in designing digital filters, as can be . . . - X
ribed in [24], we arrive at the stability polynomial

seen in the signal processing literature (see, for example, [ZZQ]S
In that context, the application of the MT is usually interpreted Ay

2 2 2
to be analogous to an integration in the time domain by means oﬁ‘(Z) =D(2) 4"z +(Z-1) ]+ 2 N(z)(z"-1) (15)

€oo
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where, for a general/th-order medium/N (%) andD(Z) are, B. Numerical Dispersion Equation

respectively, the numerator and denominatos 0f) [givenin - the nymerical dispersion equation can be easily obtained

(7)), and by simply evaluatingS(Z) on the unit circle in theZ-trans-
- form domain and equating the result to zero, thus by letting
y ) SlIl2 (k“QA“) S(CJu.At) = 0.
V7 = (Cooldt) AZ For anMth-order dispersive medium, the numerical disper-
ATEYA sion equation reads
wherek, andA,, are, respectively, the numerical wavenumber e
and the size of the discretization cell in thedirection, and sin® (£5*) jo _ sin ( “)
Coo = 1/ /s S T T AZ
The number oZ; roots ofS(Z) is M + 2 and their location e
depends on the particular medium under consideration. (16)
p p
1) Zeroth-Order Media: For zeroth-order medigs (Z2) = h
00), the resulting polynomial has been previously studied [2%' ere
Sec. [11.A] showing that the stability limit of the conventional M . m
FDTD method is preserved, provided that > 0. 2 Om [i—i tan (“?t)}
2) First-Order Media: For cold plasma, the stability poly- &= o(dUr) = = 0 - 17)
nomial is mz_:obm [/— tan (= ?t)}

— —2 3
Se(%) _(chtwp+4)Z ) ) is the discrete-time frequency-domain conductivity, usu-
+ 8 (@e +2) - 20, + 0, - 12]Z ally called numerical conductivity in the FDTD literature.
+ 813 (@, — 2) — 2w, — wﬁ + 12|12 Comparing the above expression with the continuous-time
%, —w—4 frequency-domain conductivity [(3) evaluatedsat jw], it can
b be observed that the discretization of (3) by the MT involves
with @, = w,A; andw,. = w.A,. Following the procedure & Mapping
given in [24], it is easy to show that the stability limit of the )
conventional FDTD method is preserved provided> 0. W — 2 M (18)
For Debye media, the stability polynomial is the same as the Ay cos(wA/2)
stability polynomial given in [24, eq. (11)] for the scheme in;
troduced in [8]. Thus, for Debye media, the MT technique
equivalent to the scheme given in [8].
3) Mth-Order Media 4 > 1): The higher the order of the
medium, the greater the difficulty in obtaining closed-form sta-
bility expressions. This difficulty can be alleviated with the tech-quatlon given in [25]

For cold plasma, the resulting numerical dispersion equation
nique described in [24]. As an example, we consider a Lorentz

Sthe same as that given in [19, eq. (9)] for the scheme labeled
medium with a conductivity

“New DI method,” and for Debye media is the same as [16, eq.
(€5 — €oo)wis 3] _ _ _ _

W2+ 2605 + 52 As examples of high-order media, we consider media charac-
0 0 terized byA Debye poles or by/ Lorentz pole-pairs. For the

where wy is the resonant angular frequency afglis the former, the numerical conductivity is given by

damping coefficient. For this case, the stability polynomial is

Ifrom the continuous- onto the discrete-time frequency domains.
Rs consistency demands,tends too(s)|s=j.. aswA, tends to
zero.

For zeroth-order media, (16) leads to the numerical dispersion

o(s) =

— - S O_ —
SLI(Z) I(wgﬁs +460+Z_1)Z4 B D P 1+7_7nA an(“’QAt)
+ 4[1* (@] + 460 + 4) — 260 — 4]2°
+ 2[40%(@3 — 4) — waE, + 12] 27 with Ae,,, = ¢,,, — €0, and for the latter
2(=2 _ _ )
+ 4[; (@§ - 460 +4) + 260 — 4)Z ) M 2 () e )G, tam (#22)
+ Wy, — 460 + 4 b1, = Z :

= Wi+ 25mi—% tan (£5¢) — E tan? (£2¢)
wherewy = woAy, S0 = oA, ande, = ¢, /eoo. This poly-

nomial is the same as the stability polynomial obtained in [24fith >"_ @, = 1.

for the scheme called a “New difference scheme for LorentzlIt is known that Yee's scheme involves the transformation
media.” In fact, that scheme and the MT technique for Lorentz — (2/A;)sin(wA,/2) from the continuous- onto the dis-
media have the same numerical properties. Therefore, as weste-time frequency domains. We can then associate the cosine
shown in [24], the MT technique for Lorentz media preservasrm in (18) to the characteristic time constants of the media

the stability limit of the conventional FDTD method. (i.e., T, w,t, andé;;t.). This line of reasoning leads to the

rn’
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Fig. 2. Absolute error of the reflection and transmission coefficients for the
Fig. 1.

Exact reflection and transmission coefficients for a slab characterizegample of Fig. 1. (a) Magnitude. (b) Phase.
by three Debye poles. (a) Magnitude. (b) Phase.

- . method as compared to the exact solution. The absolute error
definition of numerical values for thes_,e constants [16]. It a8y the phases is shown in Fig. 2(b). All these results have been
be sr;ovvtn fr?m (1f6) that the MT technique produces nume”cﬁgtted over afrequency band that runs from 10 MHz to 70 GHz.
constants ot the form The ripple in the curves of absolute error, observed in the lower
_ part of the frequency band (approximately until 300 MHz), is
Tm = Tm/ co8(wA/2) due to the truncation of the time-domain response. To obtain
for all the characteristic time constants of the medium. The cgi€3€ results, the FDTD simulation was run for 1 million time

sine terms arise from the averaging process involved in the MT. pst Apart from ripple gffects, it can be observed that the ab
solute errors increase with frequency.
As a second example, we considered a medium with two
IV. V ALIDATION

Lorentz pole-pairsX/ = 4). The parameters wekg = 3¢,
In order to validate the MT method presented above, we havg = 1.5¢y, w; = 27 x 20 GHz, §; = 0.1w;, G; = 0.4,

considered two examples with exact solutions. wy = 27 x 50 GHz, 62 = 0.1lwz, andGy = 0.6 [12], [2].

First we computed the reflection and transmission coefficiefihe size of the spatial cell wak, = 37.5 um and the time
of a dielectric slab with three Debye poles and a static condwstepA; = A_/c ~ 0.125 ps. Proceeding analogously to the
tivity. The parameters of this medium wesg = 0.106 S/m, previous example, first we obtained the exact solution for the
€oo = 4360, 1 = (5.2m)7! us,» = (6807)~! us, 3 = magnitude and phase of the reflection coefficient. These results
(467) 71 ns,Ae; = 1970¢o, Aex = 30.8¢p, andAes = 41.3¢;  are shown in Fig. 3(a) and (b), respectively. The absolute errors
[12]. The size of the spatial cell taken to run this example was the magnitude and phase of the reflection coefficient are de-
A, = 37.5 um and the time steg\;, = A_./c ~ 0.125 ps. picted in Fig. 4. In this case, the time-domain response is much
The width of the slab wagd = 100A.. Fig. 1(a) shows the shorter than in the previous example. As consequence, there is
exact solution for the magnitude of the reflection and transmise significant ripple masking the behavior of the error at low
sion coefficients. The exact solution for the phases is depictediaquencies. In this example, local maxima of the error curves

Fig. 1(b). Fig. 2(a) shows the absolute error of the magnitudesart observed in the vicinity of the resonant frequencies of the
the reflection and transmission coefficients obtained by the Miiedium.
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Fig. 4. Absolute error of the reflection coefficient for the example of Fig. 3.
() (a) Magnitude (b) Phase.

Fig. 3. Exact reflection coefficient for a half-space characterized by two
Lorentz pole-pairs. (a) Magnitude. (b) Phase.

Frequency (GHz)

Lorentz pole-pair media) we have shown that the MT method is

equivalent to previously reported ADE techniques. More pre-

V. CONCLUSION cisely, the MT method provides a systematic formulation for

This paper has introduced the MT technique for FDTltger;]er_alMtr_Frc]ergr n_}edlatgh;t can be _;ﬂterpretetdt a,igg tADhE
modeling of wave propagation in generdlth-order dispersive echnique. The signiticant difference with respect to ecn-

media. Starting from a rational model of the conductivity iy

the Laplace domain and applying the MT, this technique leall , ) : :
to a set of difference equations. The resulting finite-differen er way by first setting-up an equivalent problem in the Laplace

scheme preserves the second-order accuracy and the ex igpain and then going to th? dlscrete-world.by perfprmmg a
nature of the conventional FDTD method. Furthermore, t Ttp the Z domain. Finally, given the underlying equivalence

simulation of anith-order dispersive medium requires only? this rlpetglod o ADF technlqéj_es, th:DN'lET mc:]th_od should also
M additional storage variables (per electric field componeHF applicable to nonlinear media as techniques are.

and per cell). The numerical stability of the MT technique

has been analyzed by means of the von Neumann method and APPENDIX
the numerical dispersion equation has also been derived. Th
validity of this new formulation has been shown for various
high-order dispersive media.

When classifying the MT method into one of the categories 1 U ay Rt i NN(M-1
™ Z 2M—IAL Z (=1)

iques is that instead of dealing with high-order ODEs in the
e domain, the MT method treats the problem in a much sim-

She coefficients,, andd,,, of (7) are given by

mentioned in the introduction, it may appear at first sight that i/ \m—i
“this is a slightly different twist on the use & transforms.”

However, as has been shown in the paper, the MT method G@fh 7, = 1, ..., M and
be interpreted as an approximation of high-order ODEs by using

centered finite differences. In this sense, the MT method is much M .
closer to ADE techniques than to tletransform method. In d, = — Z b (_1)Z<{> <M - l)
fact, for low-order media (plasmas, single Debye pole and single % = 2M=IAL ty\m—1

t=%min

=0

?=%min
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with

m = 0,..., M. In the above expressions,;, =

max(0, m + 1 — M), imax = min(m, [) andcg is a normal-
ization constant given by

M

w=3"

=0

ay
M—IAL"
M-Il

The binomial coefficient is defined by

(1]

(2]

(3]

(4]

(5]

(6]
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